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Restoration of solar and star images with
phase diversity-based blind deconvolution
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The images recorded by a ground-based telescope are often degraded by atmospheric turbulence and the
aberration of the optical system. Phase diversity-based blind deconvolution is an effective post-processing
method that can be used to overcome the turbulence-induced degradation. The method uses an ensemble
of short-exposure images obtained simultaneously from multiple cameras to jointly estimate the object
and the wavefront distribution on pupil. Based on signal estimation theory and optimization theory, we
derive the cost function and solve the large-scale optimization problem using a limited memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) method. We apply the method to the turbulence-degraded images
generated with computer, the solar images acquired with the swedish vacuum solar telescope (SVST, 0.475
m) in La Palma and the star images collected with 1.2-m telescope in Yunnan Observatory. In order to
avoid edge effect in the restoration of the solar images, a modified Hanning apodized window is adopted.
The star image still can be restored when the defocus distance is measured inaccurately. The restored
results demonstrate that the method is efficient for removing the effect of turbulence and reconstructing
the point-like or extended objects.

OCIS codes: 100.3020, 100.5070, 100.3190, 110.6770.

As light propagates through the atmosphere, light rays
are distorted due to random variations in the index
of refraction caused by atmospheric turbulence. This
causes degradation of the images of astronomical ob-
ject captured with a ground-based telescope. A vari-
ety of image restoration approaches have been devel-
oped to reduce or remove the turbulence-induced blur-
ring. These approaches include speckle imaging[1,2],
blind deconvolution[3], deconvolution with wavefront
sensing[4,5], and phase diversity[6−8]. The concept of
phase diversity was first proposed by Gonsalves[6] and
extended by Paxman[7] et al..

Phase diversity method is a technique for obtaining es-
timates of both the object and the distribution of wave-
front induced by atmospheric turbulence. The technique
requires the simultaneous collection of two or more short-
exposure images. One of these images is the focal-plane
image that has been degraded by unknown aberration,
such as turbulence and telescope optical aberration. The
other of these images is collected in a separate channel
that is formed by further blurring the focal-image in some
known fashion, such as by adding defocus. This can be
accomplished with simple optical hardware, as shown in
Fig. 1.

Incoherent isoplanatic imaging can be modeled as a
linear shift-invariant process so that image formation is
represented by a convolution

itk(x) = o(x) ∗ htk(x) + ntk(x),

t = 1, · · · , T, k = 1, · · · , K, (1)

where o(x) is the true object intensity distribution, htk(x)
is the point-spread function (PSF) of imaging system for
tth frame and kth channel, itk(x) is the corresponding

image recorded by the detector, ntk(x) represents the ad-
ditive noise, ∗ denotes two-dimensional (2D) convolution,
x is a 2D vector in image plane, T denotes the number of
time frames, and K denotes the number of phase diver-
sity channels. We assume that we have T short-exposure
image pairs, corresponding to T frames and K channels,
typically K equals 2, as described in Fig. 1.

Under the near-field approximation, the PSF associ-
ated with the focused image is given by

ht1(x) =
∣∣∣F−1

{
P (u)eiφt(u)

}∣∣∣2 , (2)

where u is a 2D vector in the pupil plane, φt is the un-
known time-varying phase function, P is the binary aper-
ture function, and F−1{· · · } denotes the inverse Fourier
transform. In the defocus plane, the PSF is given by

ht2(x) =
∣∣∣F−1

{
P (u)ei[φt(u)+θ(u)]

}∣∣∣2 , (3)

where θ is the phase diversity function. In general, θ can
be any known function, such as defocus, astigmatism,

Fig. 1. Optical layout for phase diversity method.
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coma, etc.. In this study, we adopt defocus as phase
diversity function that can be described by

θ(u) = c(u2
x + u2

y), (4)

where ux and uy are the normalized vectors in pupil
plane, and c is the defocus coefficient dependent on the
central wavelength λ, the defocus length d, the effective
aperture D, and the focal length F through

c =
2π

λ

d

8(F/D)2
. (5)

From Eqs. (1), (2) and (3), the image restoration prob-
lem is to estimate the unknown parameters (the object
o and the phase function φt) from the data (focused it1
and defocused it2 images). If the additive Gaussian noise
model is adopted[7], the object o and the phase function
φt can be computed by minimizing the cost function[9]

J0(o, �φ) =
1
2

(
T∑

t=1

K∑
k=1

‖o ∗ htk − itk‖2

)
+

γ

2
‖o‖2 , (6)

where �φ = (φ1, · · · , φt, · · · , φT ) and ‖ · · · ‖ denotes the
Frobenius norm[10], the term ‖o‖2 is the regularization
function whose purpose is to establish numerical stabil-
ity with respect to perturbation in object o, the γ is the
nonnegative scalar regularization parameter.

Using the convolution theorem and Parseval theorem,
one can express J0 in frequency domain

J0(O, �φ) =
1
2

(
T∑

t=1

K∑
k=1

‖OHtk − Itk‖2

)
+

γ

2
‖O‖2

, (7)

where O = F{o}, Htk = F{htk}, Itk = F{itk}. Here
F{· · · } denotes the Fourier transform. Setting to zero
the derivative of J0 with respect to O, one obtains the
solution of O, as

O(�φ) =

T∑
t=1

K∑
k=1

H∗
tkItk

γ +
T∑

t=1

K∑
k=1

|Htk|2
, (8)

here, the superscript ∗ denotes the complex conjugate.
Note that the parameter γ in the denominator of Eq.
(8) induces stability by preventing division by very small
quantities or zero. By substituting O from Eq. (8) back
into Eq. (7), one obtains the reduced cost function[9]

J(�φ) =
1
2

⎛
⎜⎜⎜⎝

T∑
t=1

K∑
k=1

‖Itk‖
2

−

∥∥∥∥∥∥∥∥∥

T∑
t=1

K∑
k=1

I∗tkHtk

γ +
T∑

t=1

K∑
k=1

|Htk|2

∥∥∥∥∥∥∥∥∥

2⎞
⎟⎟⎟⎠ . (9)

To minimize the reduced cost function J(�φm), we will
use a quasi-Newton method known as limited memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)[11]. The
L-BFGS algorithm for minimization of Eq. (9) takes the
form of the iteration

�φm+1 = �φm − B(�φm)−1g(�φm), m = 0, 1, · · · , (10)

where g(�φm) is the gradient of J(�φm), B(�φm) denotes
the approximation to Hessian (matrix of second partial
derivatives) of J(�φm)[11], m is the number of iterations.
In Eq. (10), the formula of gradient function g(�φm) is
available in Refs. [7, 9] and B(�φm) can be computed by
using BFGS formula[11]. Therefore the phase diversity
algorithm consists of the following step: Step 1. Set
initial guess �φ0 = 0 and the number of iterations m = 0;
Step 2. Compute J(�φm) and g(�φm); Step 3. Call op-
timization algorithm L-BFGS and estimate new solver
�φm+1 according to Eq. (10), m = m + 1; Step 4. If the
stopping criterion is satisfied, compute the object o us-
ing Eq. (8) and go to end; if not, go back to Step 2. In
Step 4, the algorithm will terminate when the change in
the reduced cost function J is sufficiently small or the
number of iterations m reaches the set value.

In order to ascertain the performance of the phase di-
versity algorithm, we applied it to one simulated dataset
of computer-generated object and two real datasets of
astronomical object. The first of real datasets is an ex-
tended object and the second is a point-like object.

We simulate the random phase screens according to von
Karman turbulence model, and then generate multiple
pairs of turbulence-degraded images[1]. The simulated
parameters are as follows: the effective aperture D is
1.28 m, the focal length F is 40.0 m, the filter central
wavelength λ is 600 nm, the defocus coefficient c is 1.0
wave, the atmospheric seeing parameter r0 is 0.1 m, and
the signal to noise ratio (SNR) is 25 dB. The true object,
the turbulence-degraded in-focus image and out-of-focus
image are shown in Figs. 2(a)—(c), respectively. Figure
2(d) shows the restored result obtained from eight image
pairs after 500 iterations.

The dataset of extended object used in this section was
the solar granulation data collected with Swedish vac-
uum solar telescope (SVST) in La Palma, 1993 April 27.
The important parameters of the dataset are as follows:
D is 0.475 m, F is 22.35 m, λ is 469.6 nm, and c is 0.985
waves[12]. When images are not periodic or bounded,
using discrete Fourier transform to represent convolution
will arise edge effect or ringing. In order to avoid this

Fig. 2. Simulated turbulence-degraded images. (a) True ob-
ject; (b) in-focus image; (c) out-of-focus image; (d) restored
result using 8 image pairs.



April 10, 2007 / Vol. 5, No. 4 / CHINESE OPTICS LETTERS 203

Fig. 3. Short-exposure images of solar collected with SVST.
(a) In-focus image; (b) out-of-focus image; (c) restored result
using 8 image pairs.

effect, the 128 × 128 images were apodized with a 2D
modified Hanning window where the apodized part ex-
tended over only 20 pixels near the boundaries. Figure
3(a) shows one typical in-focus image. Figure 3(b) shows
one out-of-focus image collected with Fig. 3(a) at the
same time. Figure 3(c) shows the restored result using
eight image pairs after 600 iterations (including those
shown in Figs. 3(a) and (b)). In Fig. 3, only 70 × 70
center region is displayed, which corresponds to the most
reliable region after apodizing preprocess. In Fig. 3(c),
we can found more fine details than in Fig. 3(a), such
as the small granulation in the central region of restored
image.

The dataset of point-like object was acquired with 1.2-
m telescope in Yunnan Observatory. Some important
observational parameters are as follows: D is 1.06 m, λ
is 700.0 nm. A detail description of this telescope can
be found in Ref. [13]. One typical image pair from a
multiframe observation of single star is shown in Fig. 4,
where Fig. 4(a) is in-focus image and Fig. 4(b) is out-
of-focus image. The known defocus distance is essential
to obtain accurate results, but in this experiment it is
not measured accurately. It is shown that the defocus
coefficient c varying from 0.5λ to 1.5λ provides accu-
rate result[14]. In this study, the reduced cost function
J is minimal when the defocus coefficient c is equal to

Fig. 4. Short-exposure images of single star collected with
1.2-m telescope in Yunnan Observatory. (a) In-focus image;
(b) out-of-focus image; (c) restored result using 8 image pairs.

0.8 waves, which means we get the best result at this
time. Figure 4(c) shows the restored result obtained from
eight image pairs after 500 iterations.

In conclusion, the restored result of computer-
generated object suggests the effectivity of the phase
diversity-based blind deconvolution. Using the method,
we have successfully restored the solar images acquired
with SVST and the star images collected in Yunnan Ob-
servatory. Some fine details that are not visual in raw
solar image have been founded in restored image. Al-
though the defocus distance was not measured accurately,
the degraded star images have been restored. The re-
stored results demonstrate that the method is efficient
for restoring turbulence-degraded images of the point-
like and extended object.
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